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Building accurate prediction models and identifying predictive biomarkers for treatment response in
Muscle-Invasive Bladder Cancer (MIBC) are essential for improving patient survival but remain
challenging due to tumor heterogeneity, despite numerous related studies. To address this unmet
need, we developed an interpretable Graph-based Multimodal Late Fusion (GMLF) deep learning
framework. Integrating histopathology and cell type data from standard H&E images with gene
expression profiles derived from RNA sequencing from the SWOG S1314-COXEN clinical trial
(ClinicalTrials.gov NCT02177695 2014-06-25), GMLF uncovered new histopathological, cellular, and
molecular determinants of response to neoadjuvant chemotherapy. Specifically, we identified key
gene signatures that drive the predictive power of our model, including alterations in TP63, CCL5, and
DCN. Our discovery can optimize treatment strategies for patients with MIBC, e.g., improving clinical
outcomes, avoiding unnecessary treatment, and ultimately, bladder preservation. Additionally, our
approach could be used to uncover predictors for other cancers.

Every year, approximately 81,000 new bladder cancer cases are diagnosed in
the United States, resulting in 17,000 annual deaths'. Muscle-invasive
bladder cancer (MIBC) is a high-grade type of bladder cancer characterized
by tumors invading the detrusor muscle of the bladder’. Neoadjuvant
chemotherapy (NAC) followed by radical cystectomy (RC) has been con-
sidered the gold standard treatment for MIBC’. However, RC results in high
mortality rates (0.3-5.7%)" and significant surgical morbidity, with 64% of
patients experiencing postoperative complications within 90 days of RC’.
About 35% of MIBC patients achieve complete pathologic response (pCR)
with no residual tumor after treatment with NAC’. Achieving pCR to NAC
is a well-established prognostic predictor of overall survival in patients with
MIBC. In our analysis of long-term outcomes of patients enrolled in the
SWOG S1314 trial, we found that pCR is strongly correlated with survival

with a 5-year overall survival rate of 90%". Given the current paradigm for
NAC of “one size fits all,” which carries the burden of acute and chronic
toxicities, there is significant interest in a precision medicine approach to
predicting complete response to NAC. Accurately predicting response to
NAC will allow for the selective use of NAC in patients who are more likely
to benefit from treatment while minimizing treatment-related toxicity and
delayed access to surgery in patients who are less likely to respond to NAC’.

Tumor heterogeneity in MIBC has been demonstrated at both the
molecular and histologic levels', posing challenges to building accurate
prediction models as well as identifying predictive biomarkers for treatment
response'”’. Previous studies have investigated different predictors for
treatment response in MIBC, including germline biomarkers for cisplatin
sensitivity'’, immunohistochemical subtyping'*"*, defects in DNA repair
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genes'’, radiomics'®, gene expression'’, and molecular subtypes'®. However,
no study has established a robust and accurate method for predicting
response to NAC for MIBC patients".

Computational pathology has emerged as a promising tool for ana-
lyzing histology images from whole-slide images (WSIs) beyond the routine
manual examination of cancer slides™. Deep learning approaches incor-
porating WSIs and multi-omics data have demonstrated outstanding
potential for predicting clinical outcomes™. Previous studies have shown
that deep learning models based on WSI can accurately predict bladder
cancer molecular subtypes™”, cancer recurrence, and sensitivity to
chemotherapy”. Moreover, these models can also serve as effective tools for
extracting features from the tumor and predicting biological interactions
underpinning tumor behavior™.

WSIs datasets of hematoxylin and eosin (H&E) stained tissue images
have unraveled the potential of deep learning in linking complex associa-
tions of histology data with patient outcomes”’. However, predicting treat-
ment outcomes directly from WSIs faces limitations due to the need for large
datasets with matched imaging and response data. Previous studies have
found an improvement in the predictive performance of deep learning
models when integrating multiple data types”®”. By integrating multimodal
data, including histopathology images and gene expression profiles, deep
learning models can provide more reliable results and identify relevant
biological pathways™.

In this study, we aim to leverage data from WSIs, and gene expression
profiles prospectively collected from patients enrolled in the SWOG S1314
clinical trial (NCT02177695) to predict NAC response using deep learning.
We hypothesize that multimodal integration of accessible H&E images and
molecular data using deep learning can accurately stratify MIBC patients
based on their response to NAC independently of clinical features such as
age and stage. By using different interpretation approaches, including
Shapley Additive Explanation (SHAP)®, we can identify molecular and
histologic biomarkers associated with clinical outcomes that can serve as
predictors of NAC response in patients with MIBC.

Results

Study cohort

Our study included prospectively collected data from patients enrolled in
the SWOG S1314 clinical trial (NCT02177695). S1314 is a randomized
phase II trial to study co-expression extrapolation (COXEN), a gene
expression model, as a predictive biomarker for response to NAC in MIBC.
Cisplatin-eligible 237 patients with cT2-T4a NO MO urothelial cancer were
randomized to receive either dose-dense Methotrexate-Vinblastine-Adria-
mycin/doxorubicin-Cisplatin (ddMVAC) every 14 days for 4 cycles or
Gemcitabine-Cisplatin (GC) every 21 days for 4 cycles*'”'"". Among 167
evaluable patients, 42% and 36% achieved pCR in ddMVAC and GC
groups, respectively’.

Our study analyzed 182 gigapixel WSIs and microarray gene expression
data from 180 patients enrolled in S1314. Of 237 patients enrolled in the
S1314 trial, we included 180 with available WSIs and gene expression data.
The clinical characteristics of included patients are summarized in Supple-
mentary Table 1. Our dataset included 56 (30.8%) WSIs of patients who
achieved pCR (pTO after RC) and 126 (69.2%) WSIs for those who had a
partial response (PR, <pT1 but not pT0 at RC) or no response (NR, >pT1 at
RC). To convert the prediction task into a clinically relevant binary classi-
fication problem, patients who achieved complete pathologic response were
labeled as responders, and patients who had partial response or no response
were labeled as non-responders, as only complete pathologic response would
potentially enable future bladder preservation. Each WSI was coupled to a
1,071-dimensional microarray gene expression (GEX) vector of the same
patient, forming a multimodal input data structure for our model (Methods).

Determining the most effective model architecture for handling
whole slide images

To maximize the overall performance of our model, we sought to identify
the best model to handle the H&E-stained histology imaging data.

Analyzing WSIs is particularly challenging due to the complex tissue pat-
terns, intricate cellular details, hyper-resolution, immense size, and com-
putational demands. We tested three recently-developed weakly-supervised
WSI-analysis approaches including 1. Patch-based model™, 2. CLAM™, and
3. SlideGraph+* using deep learning-derived features. The results of these
three approaches are shown in Supplementary Table 2. We found that
SlideGraph+, a graph neural network, outperformed the other two
approaches in predicting response to NAC measured by Area Under the
Receiver Operating Characteristic Curve (AUROC). Specifically, Slide-
Graph+ achieved an AUROC of 0.67, followed by CLAM with an AUROC
of 0.60. SlideGraph+ focuses on the spatial correlation between local fea-
tures of patches, allowing for capturing contextual information and complex
interactions in a holistic model instead of analyzing local features. Therefore,
we selected Slidegraph+ architecture as the backbone of the histology data
analysis branches in our Graph-based Multimodal Late Fusion
(GMLF) model.

GMLF: multimodal integration of histology WSIs and gene
expression for predicting response to NAC

We used GMLF to integrate the histologic and transcriptomic information
to predict response to NAC. The model used SlideGraph+ to analyze the
tumor spatial information at both tissue and cellular levels from WSIs and a
multilayer perceptron for analyzing gene expression data (Fig. 1). For
evaluating the model performance in predicting response to NAC, we used
two strategies: 5-fold-cross-validation (5-fold CV) and 80/20 training test-
ing split (Fig. 2). In 5-fold CV, the GMLF model achieved performance in
predicting response to NAC with a mean AUC of 0.74 (£0.1). In an 80/
20 split, the model achieved an AUC of 0.72 in the testing set (Fig. 3).

We hypothesized that integrating different data modalities, including
gene expression and data extracted from WSIs, could improve the model
performance compared to using a single data modality. To test our
hypothesis, we conducted ablation studies in which we evaluated the per-
formance of each modality (unimodal) or combined two modalities (bimo-
dal) in predicting response to NAC compared to our multimodal GMLF
model (Fig. 3a). Our multimodal model, which incorporates all three bran-
ches, outperformed unimodal and bimodal models (Fig. 3b). The second-best
models were the unimodal SlideGraph+- branch for cell type and morphology
with an AUC 0f0.72 (+ 0.14) and the gene expression branch with an AUC of
0.71 in 5-fold CV and 80/20 split, respectively (Fig. 3b).

Comparing the receiver operating characteristic (ROC) curves in
specificity test'>** showed that our GMLF model outperformed the second-
best model in sensitivity with a P-value = 0.07 at 0.95 specificity.

Histopathological and molecular biomarker discovery through
multimodal interpretation
As we demonstrated that a multimodal model is necessary for improving
NAC response prediction performance, we sought to determine the features
influencing model prediction. By leveraging model-agnostic Shapley
Additive Explanation (SHAP)™”, we were able to develop interpretation
frameworks to analyze our trained GMLF model (Methods). Specifically, we
used kernel SHAP*"” together with our proxy model approach and graph-
based visualization tools in our multimodal and multilevel interpretation
framework.

In this SHAP interpretation analysis, we used the hold-out test set for
our GMLF trained on the model development set™.

Inter-modality-level model interpretation

To explain how our multimodal model makes predictions, we quantified the
contribution of each branch to the final model. This was achieved by
applying the SHAP to the final layer of the GMLF for late fusion and
prediction. This layer comprises a linear transformation, which takes each
modality’s prediction score as input to compute a univariate raw score,
followed by Platt scaling”, which converts the raw score into a prediction
probability for a binary classification task (Methods). The contribution of
each branch is shown in the SHAP summary plot (Fig. 4a) (Supplementary
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Fig. 1 | The GMLF multimodal deep learning framework of Histology and Gene
Expression Integration for Predicting Response to NAC. Our model uses two paired
data types from bladder cancer samples: gigapixel whole-slide images from routine
Hematoxylin and Eosin (H&E) stained slides, and gene expression data from tissue
microarrays. Our GMLF model consists of three branches: (1) WSI Neural Embed-
dings Branch: a GNN-based branch processing attributed graphs with nodal features
as neural embeddings extracted by ResNet50 from WSIs, (2) WSI Cell-type and

Morphological Branch: another GNN-based branch for graphs with nodal features
comprising cell type and morphological features extracted by HoVer-Net from WSIs,
and (3) Gene Expression Branch: a multilayer perceptron that processes the gene
expression vector. Each branch i of the model yields a scalar score Si. We employ a
multimodal late fusion strategy, aggregating these branch-level scores through sum-
mation, followed by Platt scaling to generate a prediction value. This value represents a
probability between 0 and 1, where 1 indicates a complete response (pCR) to NAC.
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Fig. 2 | Schematic diagram illustrating the two-strategy evaluation framework
implemented in our study. The dataset is initially split into an 80% discovery subset
and a 20% hold-out test set, utilizing stratified random sampling at the patient level
to ensure consistent data distribution among the different splits. Within the

discovery subset, stratified 5-fold cross-validation is applied for model development
and optimal parameter selection. The hold-out test set is then used to conduct an
unbiased evaluation of the final model, assessing its performance on previously
unseen data.
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Fig. 3 | Rigorous evaluation of model performance via ablation study. a Our
comprehensive ablation study assesses the three-branch multimodal GMLF against
different unimodal and bimodal baseline models formed based on the three distinct
feature modalities. Specifically, Neural Embeddings refers to the GNN branch using
ResNet50 for patch-level feature extraction, Cell Type and Morphology to another
GNN branch using HoVer-Net for patch-level feature extraction, and Gene

Expression to the branch analyzing patient-level gene expression data from tissue
microarrays. b The AUROC (Area Under the Receiver Operating Characteristic)
performance across different modality compositions is evaluated during the 5-fold
cross-validation and tested on 20% internal validation data, with models trained on
the 80% discovery dataset, for predicting response to neoadjuvant chemother-

apy (NAC).

Data 1). Interestingly, we found that the GEX branch yielded SHAP values
with the largest magnitude, indicating that it contributed more to the GMLF
model than the two GNN branches. Moreover, we were able to quantify the
contribution of each branch for each individual patient (i.e., a WSI paired
with its corresponding gene expression vector) included in the hold-out test
set, as shown in Fig. 4b (Supplementary Data 5). To evaluate the predictive
power of each unimodality branch and the overall performance of our
multimodal GMLEF, we stratified patients in the hold-out test set by response
status (pCR or non-pCR). For clarity, when comparing different branches
within the overall GMLF framework, we refer to the output of each
unimodality branch before it is combined with others in the final fully
connected layer and adjusted by Platt scaling (see Methods, Fig. 1), as the
prediction score of that branch. The final output of our GMLF framework is
referred to as the overall prediction score. We then compared the prediction
scores of each unimodality branch and the overall prediction score,
respectively, between these two subgroups using the Mann-Whitney U test.
The prediction scores from individual unimodal branches did not show
statistical significance (GEX: P =0.1834, CM: P=0.6553, NE: P =0.0741).
In contrast, the overall prediction score was significantly different between
the pCR and non-pCR subgroups (P = 0.0362 < 0.05), indicating that our
multimodal prediction model can distinguish between response subgroups,
whereas single unimodality branches cannot achieve this binary classifica-
tion (Fig. 4c).

Intra-modality-level model interpretation

Within the gene expression branch, we tried to identify genes that played a
more substantial role in predicting response to NAC. We built a proxy
model that takes the GEX vector and the output prediction scores of the two
GNN-based branches as inputs and the prediction scores of the full GMLF
model as outputs (Methods). SHAP is then performed on this proxy model
to quantify the contribution from individual genes to the model prediction.

A summary plot of the top 20 genes with the highest average SHAP
value magnitude is shown in Fig. 4d, which shows that the model was able to
pick up biologically relevant genes, including TP63, CCL5, and DCN, that
have been previously found to be associated with response to NAC**. To
further identify biological pathways predictive of response to NAC, we
performed gene set enrichment analysis (GSEA) (see Methods). We con-
ducted an exhaustive analysis of the top k gene aliases, sorted by their
average SHAP value magnitude in descending order, with k ranging from 1
to the complete list of gene aliases. This also served as a sensitivity analysis
and demonstrated stability in identifying highly enriched gene sets among
the 15 in our study, particularly for k values between 50 and 300 (Supple-
mentary Fig. 1, P<0.05 for significant enrichment, P <0.001 for highly
significant enrichment). By associating the selected genes with the known
biological processes and gene sets of interest using the combined P-value of
the 15 gene sets computed based on GSEA, we identified a subset of the top
111 ranked genes as the key gene subset (see Methods). Gene set enrichment
analysis of this top-111-gene subset revealed that basal differentiation and
myofibroblasts are the most significant pathways predicting response to
NAC, with FDR-adjusted P-values < 0.001 (Fig. 4e).

Within the GNN branch for cell type and morphological features,
we sought to identify unique histopathological features influencing
model prediction. In our framework, each node in the graph, derived
from a WSI and used as input to a GNN branch, represents a specific
patch or region of the WSI. The GNN branch assigns an importance
value to each node, known as the node value. A lower node value suggests
that the corresponding patch contributes towards predicting a complete
response to NAC (Supplementary Data 2). These importance values are
then pooled (i.e., summation over all nodes on a WSI) to get the output of
this branch. Since lower values are associated with complete response,
we sought to examine whether specific cell types or cell-type char-
acteristics are linked to these nodes. To achieve this goal, we extracted
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the patches or regions from the WSI with the top 25% (lower node
values) and bottom 25% (higher node values). We then quantified the
cell-type specific characteristics on each patch using the cell counts of
cancer cells, connective cells, immune cells, and necrotic cells, as well as
the tumor-stromal ratio calculated by dividing the cancer cell count by
the connective cell count.

For each cell type, we compared the average values of the top 25% of
regions linked to complete response with the entire slide, and we did the
same comparison for the bottom 25% of regions (Fig. 4h) (Supplementary
Data 3).

In patches linked to complete response (low node values), we found an
increase in cancer cell count and connective cell count but a decrease in
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Fig. 4 | Multilevel Multimodal Interpretation for GMLF. a Modality-level
importance attributions across all patients in the hold-out test dataset are analyzed
using a SHAP-based interpretation approach on a modality-level proxy model.

b SHAP-based modality-level importance attribution for a representative patient
(SAEAMD-0BS5RI-A1). ¢ Comparison of prediction scores between responder and
non-responder groups for the three individual unimodal branches of our multi-
modal framework GMLF: Neural Embeddings (NE), Cell-type and Morphology
(CM), and Gene Expression (GE), and the overall prediction score from GMLF for
predicting response to NAC. P-values in the boxplot subfigures were computed
using the Mann-Whitney U test, with “*” indicating P-values < 0.05. d Gene (per
alias) importance attributions across all patients in the hold-out test dataset are
determined by applying SHAP to a proxy model that inputs the gene expression
feature vector alongside predictions from the two GNN branches. The top 20 are
presented. e Gene set enrichment analysis of the selected top 111 genes selected

according to their SHAP-based gene importance attributions. Statistical significance
is assessed by the hypergeometric test, using the overall investigated gene list as a
background. f Visualization of node importance for the cell type and morphology
branch overlaid on the original H&E slide for slide SADREE-0BGNRK-1A, correctly
predicted as complete response (pCR). g Representative patches around the top 10th
quantile of nodal importance associated with non-pCR (top row) and pCR (bottom
row), annotated with HoVer-Net-estimated cell types for the same slide as (f).

h Analysis of cell-type specific distributions based on the most contributive patches -
i.e., the top 25% extremes of patch importance per slide. Boxplots for the average
patch-level cell counts or tumor-stromal ratios for no pCR (red) or pCR (blue)
predictive patches normalized by the average patch-level cell-type specific attribute
of the entire WSI, with each point representing a distinct slide. The dotted line
represents the average patch-level attribute (cell count or tumor-stromal ratio) for a
given slide, indicating no enrichment for a particular cell type.
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Fig. 5 | MDR-based ITH quantification stratified by response status and its
influence on model performance. ITH quantification was computed with the
Median Deviation Ranking (MDR) approach in (a) and (b). a Boxplots of ITH
metrics from the WSIs in pCR and no pCR subgroups. P-values computed by the

Number of Quantiles

Mann-Whitney U test. b Model performance evaluated by AUROC in different
quantile subgroups stratified by ITH quantification. The x-axis indicates k, the
number of quantiles, which ranges from 2 to the largest number before the first
appearance of invalid quantile subgroups for computing AUROC.

necrosis cell count. We also found an increase in tumor-stromal ratio in
these patches compared to patches with high node values (p-value < 0.0001).

To have a detailed analysis of the histologic features in individual WSIs,
we overlaid the node values assigned by a GNN branch to the nodes (i.e.,
patches) on the original H&E-stained WSI, where each node’s importance
value is mapped to its corresponding region or patch (Figs. 4f, 4g). We then
compared cell type-specific cell counts between the responder-associated
and the non-responder-associated regions (Supplementary Data 4). To
identify potential histological markers, we focused on the patches that are
enriched in a specific cell type (e.g., cancer cells) and associated with non-
response (Fig. 4g Top) or response (Fig. 4g Bottom).

Evaluating the Influence of Intra-Tumor Heterogeneity on Model
Performance

We quantified intra-tumor heterogeneity (ITH) using two approaches
based on nuclei morphological features of cancer cells: the Median Diversity
Rank (MDR)* and the method based on the Shannon Diversity Index
(SDI)*** (Methods). To evaluate the influence of the ITH degree on model
performance, we compared ITH quantifications between the pCR and no
PCR subgroups using the Mann-Whitney U test. No statistically significant
differences were observed (P = 0.237 for MDR [Fig. 5a], P = 0.852 for SDI
[Supplementary Fig. 2a]). These results indicate no clear association
between ITH values and response status. Next, we stratified the instances
into quantiles based on their ITH quantification values and evaluated the

model performance within each subgroup using AUROC. The analysis was
conducted across a varying number of quantiles. The MDR-based ITH
quantification results revealed a general trend of improved model perfor-
mance within the lower quantiles of ITH quantifications. In contrast, the
lowest quantile did not consistently achieve the best AUROC (Fig. 5b). In
comparison, SDI-based ITH showed no clear trend in its influence on model
performance (Supplementary Fig. 2b).

Discussion

Relying on a single data modality to develop predictive models for complex
diseases such as cancer may not offer adequate insights into disease het-
erogeneity. It is important to develop models that integrate multiple data
modalities to capture complementary disease aspects, which can provide
more precise insights for clinical decision-making. In this study, we devel-
oped a multimodal deep learning model, integrating tissue and cell infor-
mation from WSIs with gene expression data to predict response to NAC in
MIBC patients. Leveraging prospectively collected data from the SWOG
S1314 clinical trial, our model integrated (1) tumor spatial details with
cellular morphological features and cell type information from H&E-
stained WSIs analyzed with GNNs and (2) tissue-level gene expressions
analyzed with an MLP through a late fusion framework. Our model out-
performed all unimodal and ablated models, highlighting the importance of
integrating different data modalities in maximizing performance. The
model was able to accurately predict response to NAC as well as identify
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prognostic biomarkers of response from WSIs and gene expression arrays
only without including any clinical features, highlighting the strength of our
model in extracting clinically relevant markers from images and mole-
cular data.

Currently, there are no well-validated models for predicting the
response to NAC in MIBC patients". Font et al. have found that patients
with basal/squamous tumors are more likely to achieve pCR"". On the other
hand, Jiitte et al. reported that tumors with high expression of luminal
differentiation markers have a higher probability of achieving pCR"”. Mi
et al. proposed a machine-learning framework that integrated cellular,
nuclear, and tissue architectural features from WSIs and immunobhis-
tochemistry staining with basic clinical features to predict response to NAC
in MIBC patients. This framework was able to achieve 65%-73% accuracy””.

The limited performance of unimodal analysis, whether from gene
expression or H&E-stained WSIs, drove our development of a multimodal
framework. Although unimodal frameworks have their limitations, certain
deep learning architectures have shown promise in other contexts”* by
effectively extracting features and generating prediction scores from WSIs.
We systematically compared various representative techniques to select the
most suitable architecture for building the WSI-analysis branches that are
integral to our multimodal framework.

In our experiments to identify the best model architecture for analyzing
the gigapixel H&E-stained histology imaging data, SlideGraph+- demon-
strated superior predictive power compared to approaches that did not
consider spatial information. Spatial intratumoral heterogeneity is an
important hallmark of cancer, which can drive therapy resistance and dis-
ease progression””’. This is particularly important in bladder cancer, which
presents with substantial heterogeneity and high mutational burden’'. Our
GMLF model was able to identify highly-attended patches associated with
response to NAC, characterized by higher tumor cell content and altered
immune and stromal profiles. Previous studies have found that integrating
spatial information improves the performance of models predicting
response to NAC™ and immune checkpoint blockade™. In MIBC, spatial
organizations in tumor microenvironment have been linked to pCR with
neoadjuvant chemoimmunotherapy™.

In our analysis, we found an increase in cancer cell count and con-
nective cell count and a decrease in necrosis cell count in WSIs of patients
who achieved pCR. This suggests that our model can unravel the complex
interactions between cancer cells and other cells in the tumor micro-
environment. Interestingly, these patches showed a statistically significant
increase in tumor-stromal ratio. This is consistent with studies that found
tumor-stromal ratio an important predictor of response to NAC™, indi-
cating that the model was able to autonomously identify clinically relevant
predictors even without including clinical data as an input as in previously
developed models™.

Through a SHAP-based analysis, we found that the gene expression
branch contributed the most to the GMLF model compared to the two GNN
branches for WSIs. Although the GNN branch of Neural Embeddings (NE)
based on ResNet-50"" extracts embedding vectors that may not be biologi-
cally relevant, this branch was more important than the GNN branch of cell
type and morphological features. This shows the inherent tradeoff between
predictive power and the interpretability of the extracted features™. To
interpret the transcriptomic data analysis part of the model, we performed
GSEA on the selected top 111 genes ranked by their SHAP value magnitudes
(see Methods for selecting the top 111 genes). This resulted in two sig-
nificantly enriched pathways: myofibroblasts and basal differentiation. We
have recently shown that the molecular subtypes of MIBC are a significant
predictor of response to NAC'®. This is consistent with our model inter-
pretation with GSEA that our GMLF also recognized the significance of the
basal differentiation. However, studies have reported conflicting results
about whether the basal subtype is associated with increased** or
decreased”* response to NAC. This can be due to studies applying different
methods to define molecular subtypes with molecular subtyping models are
found to be inconsistent in their classification””. Given the unresolved
dispute in the study of basal subtype, we studied the significance of

enrichment of basal differentiation and other gene sets of interest by per-
forming hypergeometric tests in GSEA. This approach utilizes the set sizes,
not their expression levels, to avoid prematurely determining whether they
are positively or negatively associated with the response to NAC.

SHAP-based interpretability analysis revealed several biologically
established genes that the model considered prognostic for response to
NAGC, including TP63, CCL5, and DCN. TP63 has been shown to play a
pivotal role in tumorigenesis, cancer progression, and resistance to
chemotherapy”'. TP63 expression has been identified as a biomarker for
worse clinical outcomes in bladder cancer”. Moreover, dysregulated TP63
expression has been found to be associated with metastasis and higher
stage®’.

Interestingly, p53 plays an important role in controlling basal gene
signature, and TP63 levels are found to be elevated in the basal subtype of
MIBC", which our GSEA found as a significantly enriched pathway.

SHAP-based analysis also identified important genes involved in DNA
damage and repair as predictors of response to NAC, including PRRX1,
RUNX3, PPARG, and ZEB2. PPRX1 regulates DNA repair pathways by
cooperating with FOXM1, and PPRX1 downregulation was found to
increase the sensitivity of osteosarcoma to cisplatin and doxorubicin™®.
RUNX proteins, including RUNX1 and RUNX3, regulate DNA damage
response by facilitating the recruitment of FANCD2 to DNA repair foci®.
Several studies have found that RUNX3 mediates resistance to cisplatin”,
carboplatin®, and gemcitabine® in different cancers. Li et al. have found that
PPARG interacts with MRN complex (MRE11-RAD50-NBS1) to promote
DNA repair’, and PPARG agonists were shown to enhance the efficacy of
platinum-based compounds in several cancer types, including non-small
cell lung cancer”', ovarian, and colon cancers””. ZEB2 can promote che-
motherapy resistance by activating genes involved in nucleotide excision
repair, including ERCC1 and ERCC4”.

Our model also identified CCL5 as an important gene marker in
predicting response to NAC, which has been reported to decrease che-
motherapy activity in breast and prostate cancers’*”. This emphasizes the
strength of our data-driven approach in identifying key molecular features
crucial for predicting response to NAC in MIBC tumors.

Our study is not without limitations. Despite employing robust
methods for training and testing, including 5-fold cross-validation and
evaluating performance on a hold-out test set, the model was not externally
validated using an external dataset other than SWOG S1314. Thus, further
validation using an external dataset with larger sample sizes is needed to
evaluate the model’s generalizability. In interpretability analysis, we assigned
an importance score to each input gene instead of providing a specific subset
of genes as molecular biomarkers. In gene enrichment analysis, we used an
empirical cutoff of the top 111 important genes to be included. Our model
employed a late fusion framework that aggregated univariate prediction
scores from three different branches. Despite demonstrating superior pre-
diction performance, it falls short in unraveling the intricate interactions
between the valuable features learned from each different modality. Our
model relied only on WSIs and gene expression. However, additional
modalities could improve the model’s performance, such as digital spatial
profiling and circulating tumor DNA. Previous studies have demonstrated
that changes in ctDNA dynamics and digital spatial profiling are correlated
with pathologic response™”.

In summary, our study provides a novel framework for predicting
response to NAC in MIBC patients from routinely collected H&E images
and gene expression vectors. Predicting response to NAC in MIBC is crucial
for personalizing treatment strategies, improving clinical outcomes,
avoiding unnecessary treatment, and ultimately, bladder preservation”.

To the best of our knowledge, this is the first work to develop an
interpretable model that integrates WSIs and gene expression for predicting
response to NAC in MIBC.

Our findings suggest that the multimodal integration of tissue-level
gene expression and tissue morphological and cell-type information
extracted from histology WSIs can perform better than single unimodal
models. An important strength of our model is being trained on
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prospectively collected data from the S1314 randomized controlled trial
with rigorous validation methods. Our model used SlideGraph+- archi-
tecture for analyzing WSIs, which accounts for spatial information, allowing
the model to capture the spatial intratumoral heterogeneity. We used robust
interpretation methods to uncover the most important features that influ-
enced the model’s predictions. Our model was able to autonomously reveal
biologically relevant biomarkers and highly-attended patches from WSIs
associated with response to NAC. Further research on larger datasets, as well
as experimental validation, are needed to establish the identified molecular
and histologic biomarkers for predicting response to NAC in MIBC. Given
that H&E images and gene expression data are routinely collected, our study
could potentially advance the stratification of patients with MIBC based on
their response to NAC, allowing the integration of precision medicine in
clinical decision-making.

Methods

Model evaluation strategies

We evaluated our model and competitive baseline methods through two
different strategies (Fig. 2). The 180-patient dataset is split into two non-
overlapping sets: one is the discovery set (80% of patients, 45 CR, 101 N/PR),
and the other is the hold-out test set (20% of patients, 11 CR, 25 N/PR). In
the first strategy, the models were trained and evaluated on the discovery set
using 5-fold cross-validation (5-fold CV). In the second strategy, the models
were trained using the discovery set divided into non-overlapping training
and validation subsets and then tested using the hold-out test set. The
second strategy is denoted 80/20 training-testing split according to the
patient-level splitting ratio. We split data via stratified random sampling at
the patient level for model training and testing to avoid data leakage bias, as
some patients had multiple WSIs.

Our study used histopathology and cell type data from standard H&E
images with gene expression profiles derived from RNA sequencing from
the SWOG S1314-COXEN clinical trial (ClinicalTrials.gov NCT02177695
2014-06-25).

Baseline unimodal models

CLAM. The clustering-constrained-attention multiple-instance learning
(CLAM)™ considers each WSI as a bag of non-overlapping patches and
employs attention-based learning to identify patches of high diagnostic
value to accurately classify whole slides and instance-level clustering over the
identified representative patches to constrain and refine the feature space.
Notably, CLAM operates without considering the spatial relationship
between these subregions. Patches were extracted at 2048 x 2048 pixels at the
highest resolution of the whole slide image, and features were extracted
using the default modified ResNet-50 model. Default hyperparameters were
used for the analysis.

Patch-based weakly-supervised Model. Patches were extracted at 1024
pixels x 1024 pixels at the highest resolution and down-sampled to 512
pixels x 512 pixels. Image patches were filtered out based on the percentage
of tissue in the image (>40%), and blur detection was used to remove patches
that were scanned out of focus”™®. Two different datasets were used. (1) All
patches, 531,048, were used for the analysis, and (2) patches containing >
50% tumor purity as assessed by a trained HoVer-Net model (pre-trained
on PanNuke’”) to mimic the patch-based model* that only used tumor
regions for the analysis™.

A modified model and training protocol of the patch-based molecular
subtype prediction model™ was used for this analysis. In short, each patch
was given the same label for a given slide. Data augmentation was performed
using a combination of PyTorch built-in functions (Resize: 256, random
rotations: -90 to 270, Color Jitter: Brightness, contrast, saturation, and hue =
0.4 p=0.8, RandomErasing, and mean/standard deviation normalization)
and separate H&E slide specific transformations (HED]itter — theta = 0.05)"".
Batch size was set to 20, the learning rate was set to 1 x 10~*, weight decay was
set to 1 x 107°, and the Stochastic Gradient Descent (SGD) optimizer with
momentum (0.9) was used. The model was EfficientNetV2_S with initial
weight pre-trained on ImageNet. MixUp was used to train the model with

BinaryCrossEntropywithLogits loss from PyTorch. All models were trained
for five epochs.

Slidegraph + . SlideGraph-+* is a graph-based neural network model
that can capture the overall organization and structure of the tissue. It does
this by modeling the spatial relationships between cells in the tissue. The
overall framework consists of four steps: (i) Feature Extraction: The WSI is
preprocessed by masking out the background region and divided into non-
overlapping patches of size 2048 x 2048 pixels at the highest resolution of the
WSI. From each patch, a high-dimensional feature vector is extracted from a
pre-trained deep-learning model. Depending on the context, we used
ResNet-50™ to extract a 2048-dimensional embedding vector (namely, the
neural embeddings) and HoVer-Net™ to extract 5 cell types and morpho-
logical features of nuclei from each cell type. (ii) Spatial Clustering: Similar
patches are grouped together using an adaptive spatial agglomerative
clustering, which relies on a patch-level similarity metric®. (iii) Graph
Construction: A planar graph representation is built based on the clustered
patches. In our work, each node of this graph representation consists of one
patch. The graph edge set is built using Delauney triangulation based on the
geometric coordinates of cluster centers with a maximum distance con-
nectivity threshold of pixels®. This graph captures the spatial relationships
and cellular organization of the tissue. (iv) Graph Neural Network Predic-
tion: The constructed graph is fed into a graph neural network to predict the
response to NAC at two levels: responders vs non-responders.

Graph-based Multimodal Late Fusion (GMLF) Framework

We built a Graph-based Multimodal Late Fusion (GMLF) model to inte-
grate multimodal features from histology image data and gene expression
data. Multiple branches are utilized to extract features from different
modalities and generate a unimodal prediction score. We used the late
fusion strategy to combine the unimodal prediction scores through a linear
transformation into a univariate raw score, followed by the Platt scaling to
this raw score into a prediction probability for the responder-vs-non-
responder binary classification task. In this study, GMLF comprises three
branches: two for histology imaging data (i.e., the WSIs) and one for gene
expression data. The two WSI branches are based on SlideGraph-+"* and
differ in what features are extracted at the tile/patch level. Specifically, one
used ResNet-50" to extract 2048-dim features, namely the neural embed-
dings, as each individual feature has no specific biological interpretation.
The other WSI branch used HoVer-Net™ to extract 155-dim features: 5-dim
cell-type counts and 5 X 30-dimensional feature vector, which contains the
means and standard deviations of 15 different morphological properties*™ of
each cell type. We used a multilayer perceptron to generate a unimodal
prediction score from gene expression.

Ablation study

We conducted an extensive ablation study to investigate the contribution of
each feature modality. Besides the overall GMLF, we investigated three
unimodal models that only used one of the three branches of GMLF and
three bi-modal models that combined two of the three branches. Each bi-
modal model also used the linear transformation to combine its two
unimodal prediction scores. All these models used Platt scaling as the last
step to convert the output into a probability of prediction.

Model evaluation

All models were chosen based on epoch with the lowest validation loss for
Patch-based weakly supervised models and CLAM. AUROC was used to
evaluate model performance across all experiments using scikit-learn.

Multimodal importance analysis

Proxy Models for Modality-level and Gene-level Feature Importance
Analysis. We adapted SHapley Additive exPlanations (SHAP), which is a
model-agnostic technique for interpreting complex machine learning
models, to interpret our GMLF at different levels. The SHAP variants based
on gradient-based feature attribution®*** or backpropagation (e.g,
DeepLIFT***) were not applied in our model interpretation framework.
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This is because their existing implementations are not directly applicable to
our GMLEF, which integrates both multilayer-perceptron and graph-neural-
network components™, and they are reported to have limitations in inter-
preting graph-based deep models”. Instead, we leveraged model-agnostic
SHAP®' by utilizing proxy models. A proxy model comprises part of the
original trained model, redefines input data based on what is fed into this
part, and generates the same final output as the original trained model for
any test data. For the modality-level importance attribution, the proxy
model comprises the fusion layer and the final prediction score. It redefines
the input with the intermediate-output prediction score from each indivi-
dual modality branch - i.e., a 3-dimensional vector. To obtain the molecular
feature importance attribution, the proxy model comprises the MLP branch
for gene features, the fusion layer, and the final prediction layer of GMLF. It
redefines the input by appending the prediction scores of the two GNN-
based branches (ie, WSI Neural Embeddings and WSI Cell-type and
Morphology) to the gene expression vector - i.e., an (n+ 2)-dimensional
vector where n is the length of input gene expression associated with a WSL

Proxy models. For the modality-level importance attribution, we cre-
ated a proxy model that can take the output prediction score from each
individual modality branch as input and yield the same output as our trained
GMLF model. This proxy-model-based technical approach is also applied to
molecular feature importance attribution at the individual modality level.
The input to this latter proxy model is created by appending the prediction
scores of the two GNN-based branches (i.e., WSI Neural Embeddings and
WESI Cell Type and Morphology) to the gene expression vector.

Gene Set Enrichment Analysis. A total of 15 different gene sets with a
range of different sizes from the work on molecular classification of MIBC*
were used for interpreting gene expression. To interpret the gene sets most
important for the prediction task, all gene aliases were sorted from the
largest SHAP value magnitude to the lowest SHAP value magnitude. The
input gene expression data in our study includes a total of 1071 gene aliases,
corresponding to 818 unique gene symbols. We used gene symbols instead
of gene aliases in GSEA. For genes with multiple aliases, each gene was
counted only once, using the alias with the largest average SHAP value
magnitude. To assess how sensitive the enrichment analysis is to different
gene set sizes, a range of different subsets, from 1 to the length of gene aliases
at intervals of 1, were used. A hypergeometric test was performed for each
gene set at each subset size, and FDR correction was performed at each
interval. We identified gene sets that were statistically significant at a
P <0.05 and highly significant at a P < 0.001 after correction for the top gene
subset (cf. section Selection of the Top Gene Subset).

Selection of the Top Gene Subset. The top gene subset was derived from
the gene alias list sorted by their average SHAP value magnitudes based on
the association between the candidate gene subsets and the known biological
pathways or gene sets of interest. Given the well-established use of GSEA for
interpreting and justifying gene subset selection®”, we developed an
approach to identify the cutoff from the sorted gene alias list using GSEA.
Specifically, for the subset size k ranging from 1 to the full length of the gene
alias list, we selected the top k aliases and mapped them to their corre-
sponding gene symbols as a candidate gene subset. We then measured the
enrichment significance of each of the 15 gene sets of interest in each
candidate gene subset. The combined p-value of all 15 gene sets was com-
puted using Fisher’s method™. The k*-gene-alias subset yielding the highest
—log (combined p — value) was selected, and their corresponding gene
symbols were used as the top gene subset of biological significance according
to our input gene sets of interest.

Histological Feature Analysis. Cell type information was extracted for
all patches, as mentioned previously, using a PanNuke pre-trained HoVer-
Net model. To understand the cell types that were important for NAC
response prediction, we identified the top 25% and bottom 25% of activa-
tions for the patches on the WSI cell type and morphological branch and
compared them to all patches used for the analysis. We calculate the average
patch-level cell feature for each slide. Tumor-stromal ratio was also assessed
as a predictor of chemotherapy response as the per-patch cancer cell count
was divided by the stromal cell count. We calculate the slide level average cell

type feature and divide each subset (top 25% and bottom 25%) by the same
metric for the entire slide to identify specific enrichment for the subset.

Intra-Tumor Heterogeneity (ITH) Quantification

We adapted two approaches for ITH quantification using the nuclei mor-
phological features. We focused on cancer cells annotated by HoVer-Net™
and used the morphological features computed by the functions from the
skimage.measure (label, regionprops, regionprops_table). (1) The Median
Diversity Ranking (MDR) approach is adapted from a previous study on
ITH with pan-cancer analysis*’. An image-level diversity measure d, "' was
first computed for each morphological feature using the Mean Absolute
Deviation (MAD) across all cancer cell nuclei within this WSI - ie,,
d-"S' = MAD,,,,.(f). Then, the nuclear diversity ranks R were cal-
culated for each morphological feature by sorting the WSIs according to the
corresponding diversity measure. The final quantification of nuclear
diversity D for each WSI was derived from the Median Diversity Rank
(MDR) across all morphological features divided by the maximum MDR

7 wsI
across all the WSIs - i.e, DWS = median (8 ) (2) The approach based

on the Shannon Diversity Index’ is adapted from previous studies on
heterogeneity in brain tumors and breast tumors'”*’. The sampled cancer
cell nuclei were firstly clustered into subgroups by hierarchical clustering
Euclidean distance and Ward linkage, with the optimal number of clustering
determined by the “silhouette” index. The Shannon Diversity Index”" (SDI)
is computed over the cancer cell nuclei clusters for each WSI as its ITH
quantification.

Data availability

The processed gene expression matrix and pathologic response data ana-
lyzed in this study are available in the Gene Expression Omnibus (GEO)
under accession number GSE244266. The whole-slide images used in this
study are maintained by SWOG and are available for qualified researchers
upon reasonable request.

Code availability
The code repository for this work is available at https://github.com/ZB-
WCM/GMLE _response_ NAC_MIBC.
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