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Article info Abstract
Article history: Background and objective: The 2024 US Food and Drug Administration approval of
Accepted September 9, 2024 erdafitinib for the treatment of metastatic urothelial carcinoma (mUC) with FGFR3 alter-
ations ushered in the era of targeted therapy for bladder cancer. In this review, we sum-
Editor in chief: marize the effects of FGFR pathway alterations in oncogenesis, clinical data supporting
Alberto Briganti FGFR inhibitors in the management of bladder cancer, and the challenges that remain.
Methods: Original articles relevant to FGFR inhibitors in urothelial cancer between 1995
Keywords: and 2024 were systematically identified in the PubMed and MEDLINE databases using
Urothelial cancer the search terms “FGFR” and “bladder cancer”. An international expert panel with exten-
Precision oncology sive egperien.ce in FGFR inhibitor treatment was convened to synthesize a collaborative
FGFR inhibitor narrative review.
Immunotherapy Key findings and limitations: Somatic FGFR3 alterations are found in up to 70% of low-

grade non-muscle-invasive bladder cancers; these activate downstream signaling cas-
cades and culminate in cellular proliferation. Beyond a link to lower-grade/lower-
stage tumors, there is little consistency regarding whether these alterations confer prog-
nostic risks for cancer recurrence or progression. FGFR3-altered tumors have been linked
to a non-inflamed tumor microenvironment, but paradoxically do not seem to impact
the response to systemic immunotherapy. Several pan-FGFR inhibitors have been inves-
tigated in mUC. With the introduction of novel intravesical drug delivery systems, FGFR
inhibitors are poised to transform the therapeutic landscape for early-stage UC.
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Conclusions and clinical implications: With deepening understanding of the biology of
bladder cancer, novel diagnostics, and improved drug delivery methods, we posit that
FGFR inhibition will lead the way in advancing precision treatment of bladder cancer.
© 2024 European Association of Urology. Published by Elsevier B.V. All rights are
reserved, including those for text and data mining, Al training, and similar technologies.

ADVANCING PRACTICE

What does this study add?

Approval of erdafitinib for FGFR3-altered urothelial carcinoma represents the first success in targeted therapy for bladder
cancer. Our narrative review summarizes key insights regarding FGFR-targeted therapies. Several pan-FGFR inhibitors
have been investigated in metastatic urothelial cancer. With the introduction of novel intravesical drug delivery systems,
FGFR inhibitors are poised to transform the therapeutic landscape for early-stage urothelial cancer.

Clinical Relevance

Over the past several years, the era of precision oncology has emerged with the advent of targeted therapies for various
malignancies. Notably, therapies targeting activating FGFR alterations in urothelial carcinoma have gained significant
attention. While erdafitinib, the first approved FGFR inhibitor for advanced urothelial carcinoma, has been a major focus,
the research landscape surrounding FGFR alterations is extensive. This timely expert review summarizes the clinical and
molecular associations of FGFR alterations, highlighting promising treatment paradigms that could be applied to earlier-
stage urothelial carcinoma in the future. Associate Editor: Gianluca Giannarini M.D

Patient Summary
A class of drugs called FGFR inhibitors is approved for the treatment of advanced bladder cancer that does not respond to
chemotherapy. These drugs may also be of benefit in patients with early-stage non-muscle-invasive bladder cancer. Our

review summarizes evidence on the use of these drugs in bladder cancer.

1. Introduction

Targeted therapies against oncogenic driver mutations have
been successful in the treatment of chronic myeloid leuke-
mia harboring BCR-ABL fusions [1], BRAFV®°°E_mutated mel-
anoma [2]|, EGFR-mutated lung cancer [3], and breast
cancers with HER2 amplification [4], among others. In Jan-
uary 2024, the US Food and Drug Administration (FDA)
approved erdafitinib for patients with locally advanced/
metastatic urothelial carcinoma (mUC) with FGFR3 alter-
ations whose disease has progressed on or after one line
of prior therapy, which opened the door to targeted treat-
ments in bladder cancer. Much has been uncovered regard-
ing the molecular characteristics of FGFR3 mutants in UC,
with important implications for therapeutic inhibition,
impact on the tumor immune microenvironment, and
potential resistance mechanisms. This review summarizes
current knowledge regarding the properties and functions
of wild-type (WT) and mutant FGFR3, the prognostic role
of FGFR3 mutation, various therapeutic targeting strategies,
and clinical trial results in UC. In addition, we examine the
evidence gathered on mechanisms underlying resistance to
FGFR inhibitors and anticipate potential strategies for
circumvention.

2. Methods

Relevant articles for this narrative review were identified
via a systematic approach for articles published from 1995
to 2024. PubMed and MEDLINE were queried for keywords
“FGFR” and “bladder cancer” with the Boolean AND opera-
tor, which yielded 267 articles. Articles eligible for inclu-
sions were original articles, reviews, and meta-analyses
published in English. Case reports and articles that were
not peer-reviewed were excluded. Titles and abstracts were
screened and reviewed independently by the lead author (R.
L.) and second author (]J.L.) for relevance. Reference lists in
the pertinent articles were examined to augment the source
material. Duplicates were filtered. The full text of relevant
studies was reviewed, and evidence was collated and con-
densed by the first and second authors and a summary doc-
ument circulated to all co-authors for consensus before
drafting of the manuscript.

3. Results

FGFR1-4 are a family of highly conserved receptor tyrosine
kinases (RTKs) consisting of an extracellular ligand-binding
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Fig. 1 - FGFR structure and function. The general structure of the FGFR family includes an extracellular domain with a ligand-binding pocket, a
transmembrane domain, and an intracellular domain containing a split tyrosine kinase capable of phosphorylating the activation loop of a partner FGFR
following receptor dimerization. Receptor activation leads to downstream signal cascades via multiple pathways, including Ras/Raf/MAP kinase, JAK/STAT,
PLCy, and PI3K/AKT, all of which are implicated in the regulation of cell proliferation. FGFR3 is the most commonly altered FGFR gene in urothelial carcinoma,
with several hotspot mutations. The majority of activating single-variant mutations involve cysteine substitution in the extracellular or transmembrane
domain, which leads to receptor dimerization via the formation of disulfide bonds in the absence of ligand interaction. Mutations in the tyrosine kinase
domain can lead to constitutive autophosphorylation. Similarly, FGFR3 fusions (FGFR3-TACC) can lead to autophosphorylation and constitutive signaling.

domain, a transmembrane domain, and an intracellular tyr-
osine kinase domain (Fig. 1) [5]. FGFs and other ligands trig-
ger receptor dimerization, leading to autophosphorylation
of tyrosine residues on the activation loop of the intracellu-
lar domain, which in turn stimulates several downstream
signaling cascades, including PLCy, PI3K-AKT, and RAS-
MAPK [6]. FGFR signaling is physiologically involved in
embryonic development, metabolic homeostasis, endocrine
function, and wound repair [7]. In cancer, FGFR dysregula-
tion promotes the proliferation and survival of cancer cells
and the development of resistance. As FGFR is not constitu-
tively active in nonmalignant cells, they serve as optimal
targets for inhibition in cancer treatment.

3.1. FGFR alterations in UC

Activating somatic alterations most commonly occur in the
FGFR3 gene in UC [8]. These mutations are found in up to
70% of low-grade, non-muscle-invasive bladder cancer
(NMIBC) cases and in 10-15% of muscle-invasive bladder
cancer (MIBC) cases [9]. FGFR3 alterations have been
observed in precancerous lesions such as urothelial hyper-
plasia and papilloma, and it is thought that they contribute
to early oncogenesis [10]. The most common activating
alterations are missense mutations, including FGFR3524°¢
(48.1%) and FGFR3%?48C (9.2%) in the extracellular domain,
and FGFR3Y37°¢ (13.2%) in the transmembrane domain
[11]. These missense mutations induce cysteine-mediated
disulfide bond formation, which leads to ligand-
independent dimerization and autoactivation. Gene fusion
has also been observed, such as coupling between the

C-terminus of FGFR3 and TACC3 (2%). This results in escape
from microRNA targeting the 3’-untranslated region of
FGFR3, followed by TACC3-mediated dimerization and acti-
vation of FGFR3 [12].

Arecent query of 1421 UC samples in the Memorial Sloan
Kettering IMPACT database revealed that the prevalence of
FGFR3 alterations in UC was 27.5%. Altered FGFR3 was found
in 39% of NMIBC cases (biased towards T1 HG NMIBC), 14%
of MIBC cases, 43% of localized upper tract UC (UTUC) cases,
and 26% of metastatic tumors [13]. The most common co-
altered genes were PIK3CA (28%) and TSC1 (13%). Notably,
in patients with paired primary and metastatic lesions,
genomic profiling revealed 26% discordance for FGFR3 alter-
ation. The degree of intrapatient tumor heterogeneity
underscores the importance of updated tumor biopsy and
profiling immediately before initiation of therapy.

One significant loss-of-function mutation that co-occurs
with FGFR3 alterations is in KDM6A. Barrows et al [14]
demonstrated an antagonistic relationship between the
functions of KDM6A and FGFR3 in urothelial cell differentia-
tion: whereas KDM6A supported the transcription of genes
essential for luminal cell fate and FGFR3 activation was
associated with lower levels of luminal gene expression.
Phenotypically, KDM6A expression prevented FGFR3-driven
increases in colony formation in vitro by blunting FGFR3-
dependent gene expression. Although no causal relationship
has been demonstrated, KDM6A loss may create a more
plastic epigenetic background that globally supports the
activation of FGFR3 signaling and increases the likelihood
of tumorigenesis.
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Proteogenomic profiling revealed another attractive
property of FGFR3-altered bladder tumors with therapeutic
implications: their heightened sensitivity to apoptotic stim-
uli [15]. Proapoptotic effectors, such as initiator caspase-8,
its effector, BID, and other apoptosis effectors (caspase-3,
6), were enriched in FGFR3-mutated tumors. In addition,
FGFR3 overexpression was linked to accumulation of recep-
tors for TRAIL and concomitant abrogation of inhibitors of
apoptosis (c-FLIP), making such cells doubly sensitized to
apoptotic signaling.

3.2 Impact on immunity and rationale for immune
checkpoint inhibitor combinations

In addition to its interaction with other intracellular path-
ways, FGFR3 overexpression has consequences that extend
beyond the cancer cell and into the tumor microenviron-
ment. Sweis et al [16] demonstrated a discrepancy in FGFR3
alterations between noninflamed (FGFR-high) and inflamed
(FGFR-low) bladder tumors from The Cancer Genome Atlas
(TCGA). These results were corroborated in the UROMOL
NMIBC cohort [17] and a smaller UTUC cohort, with upreg-
ulation of IFNvy-related genes (BST2, MX2, IRF9, and GBP2) on
FGFR3 knockdown proposed as a possible mechanism [18].

The link between FGFR3-altered tumors and a nonin-
flamed microenvironment is not fully explained by intrinsic
tumor factors (eg, tumor mutational burden [8]) and several
other mechanisms have been proposed. Analysis of a model
in which tumorigenesis is induced by N-butyl-N-(4-
hydroxybutyl)-nitrosamine demonstrated rapid tumor
growth on a background of FGFR3%%4°C mutation, presum-
ably because of suppression of neutrophil infiltration in
early oncogenesis [19]. FGFR3 alterations are also impli-
cated in stimulation of serine synthesis in cancer cells,
which leads to activation of the PI3K/Akt pathway in infil-
trating macrophages and a shift to an immune-inert pheno-
type with lower production of the T-cell chemoattractant
CXCL9 [20]. Inhibition of the PI3K pathway using duvelisib
reversed the immunosuppressive macrophage phenotype,
which synergized with FGFR3 inhibition to increase antitu-
mor activity. Finally, FGFR3 expression also impacts the T-
cell compartment within the tumor immune microenviron-
ment. Activation of the FGFR3 pathway suppresses PD-L1
levels in tumor cells via increased ubiquitination, which
provides a rationale for combination strategies using FGFR3
and PD-(L)1 inhibition [21]. Further support for this
approach comes from emerging preclinical data demon-
strating that inhibition of FGFR2 on T-regulatory cells on
administration of erdafitinib led to an increase in antitumor
activity associated with PD-1 inhibition in an FGFR3-driven
transgenic murine model [22].

Evidence for the role of FGFR3 in creating an immuno-
suppressive microenvironment prompted several post hoc
analyses of immune checkpoint inhibitor (ICI) trials in UC.
The hypothesis was that the inert immune microenviron-
ment associated with such tumors may impair treatment
responses. In a combined analysis of IMVigor210 and
CheckMate275, Wang et al [23] found that FGFR3-altered
tumors were not associated with worse response to ICI ther-
apy despite exhibiting decreased T-cell transcriptomic sig-
nature. The study suggested that lower T-cell infiltration

may have been compensated by the attenuated immuno-
suppressive effect from TGFB or EMT/stromal pathway sig-
naling. A neoadjuvant study, in which tumors with high
FGFR3 effector activity and FGFR3 long noncoding RNA were
not associated with non-response despite being associated
with suppressed immune activation recapitulated this find-
ing [24]. By contrast, a post hoc biomarker analysis of the
JAVELIN Bladder 100 trial found inferior survival for
patients with FGFR3-altered tumors treated with avelumab
in the switch maintenance setting [25]. Further analysis is
required to confirm whether FGFR3 alterations can be used
to predict response to ICIs.

3.3. Prognostic role

Much effort has been dedicated to defining the prognostic
role of FGFR3 alterations in UC. Tumors with FGFR3 alter-
ations are typically of lower grade or stage, but there is little
consistency on whether this confers a higher risk for recur-
rence or progression [26,27]. For low-grade NMIBC, conflict-
ing data have demonstrated and association between FGFR3
alterations and both lower [28] and higher [27] recurrence
rates. For high-grade T1 NMIBC, some results showed no
association with progression and survival [29], while others
suggested favorable prognosis [30]. In a cohort of 263
patients with high-grade T1 NMIBC receiving intravesical
bacillus Calmette-Guérin (BCG), there were no significant
differences in recurrence, progression, or disease-specific
survival between the FGFR-altered and WT groups [31].

Curiously, co-alterations between FGFR3 and TP53 were
rare, typically occurring in <10% of the tumors profiled
[29,30]. The lack of overlap between these two alterations
suggests that they are critical drivers of divergent pathways
of oncogenesis [32]. While this may imply better prognosis
for FGFR3-altered tumors, the reality is likely to be more
complex, with close interactions between many intertwin-
ing molecular pathways. Thus, the true prognostic power
of FGFR3 alterations needs to be defined within the context
of other associated alterations and pathways.

34. Targeting of FGFR

Given the high prevalence of FGFR alterations in UC, espe-
cially in NMIBC, there has been growing interest in targeted
FGFR inhibition (Table 1). Tyrosine kinase inhibitors (TKIs)
are small-molecule inhibitors broadly categorized as selec-
tive or nonselective. First-generation nonselective TKIs
block multiple phylogenetically related RTKs such as
VEGFR, PDGFR. Owing to their structural homology, selec-
tive inhibitors may target several members or an entire
family of RTKs (eg, FGFR1-4). There is general uncertainty
about whether the original nonselective TKIs can suffi-
ciently inhibit FGFR signaling, as dosing is limited by on-
target toxicity such as hypertension and cardiovascular
adverse events (AEs) induced by VEGFR inhibition [33].
Amongst the nonselective TKIs, only dovitinib (targeting
VEGFR1-3, FGFR1-3, and PDGFRpB) has been tested in
BCG-unresponsive NMIBC and exhibited modest efficacy
(6-mo complete response [CR] rate 8%) despite an adequate
biological concentration in the urothelium [34].



Table 1 - FGFR inhibitors tested in urothelial cancer

Inhibitor Mechanism Target Binding Delivery Primary Clinical trial ~ FDA Most common grade >3 AEs Clinically notable AEs (any grade) References
site cancer approval
trials
Second generation (FGFR selective)
Erdafitinib TKI RTI FGFR1-4 ATPc Oral uc Phase 3 uc Overall 45.9% HPP (80%), PPE (51.1%), nail disorders (66.7%), [35,43]
(JNJ- PPE (9.6%), STM (8.1%), anemia SRD (5.2%), RPED (1.5%)
42756493) (7.4%), HPP (5.2%)
Rogaratinib TKI RTI FGFR1-4  ATPc Oral uc Phase 2/3 Under Overall 47.7% HPP (45.3%), PPE (NR), nail disorders (NR), Collin 2018
(BAY1163877) review Asthenia (9.3%), lipase 1 (8.2%), retinal disorder grade >2 (7.0%) [41]
diarrhea (4.7%), anemia (3.5%)
Infigratinib TKI RTI FGFR1-3  ATPc Oral UC/CGC Phase 1/3 CGC Overall 68.7% HPP (46.3), PPE (11.9%), dry eye/blurred [39]
(BGJ398) (discontinued) Lipase 7 (10.4%), PPE (7.5%), anemia vision (26.8%), central serous retinopathy and Javale 2021
(7.5%), HPO (7.5%), hyponatremia RPED (17%)
(6.0%)
Pemigatinib TKI RTI FGFR1-3  ATPc Oral uc Phase 2 CGC Overall 36.5% HPP (53.5%), NTX (40%), dry eye (26.9%), SRD  Lui 2020
(INCB054828) STM (8.8%), anemia (8.1%), UTI (13.1%), HPO (8.5%), vitreous detachment [54]
(7.3%), asthenia (4.6%) (2.3%)
Fexagratinib TKI RTI FGFR1-3  ATPc Oral Lung, breast  Phase 2 No Overall 41.0% HPP (50.0%), NTX (26.0%), dry rye (22.0%), Chae 2020
(AZD4547) (breast) Mucositis (14.0%), AST 1 (8.0%), PPE  RPED (21.2%), HPO (8.0%) Coombes 2022
(6.0%), ALT 1 (6.0%)
Tasurgratinib TKI FGFR1-3  ATPc Oral CGC Phase 2 No ° N/A N/A Miyano 2016
(E7090) type V (CGC) Koyama 2020
Derazantinib TKI FGFR1-3  ATPc Oral UC/CGC Phase 2 No N/A Retinal events (16.0%), NTX (6.1%), STM Hall 2016
(ARQ 087) (4.0%), PPE (0%) Necchi 2023
LY2874455 TKI RTI FGFR1-4  ATPc Oral Gastric/ Phase 1 No N/A N/A Michael 2017
NSCLC Dehghanian 2021
Futibatinib TKI IRTI FGFR1-4 KD Oral CGC Phase 2 No HPP, AST 1, STM, fatigue N/A Goyal 2023
(TAS-120) P-loop
Third generation (FGFR subtype-specific)
TYRA-300 TKI FGFR3 KD GMR  Oral uc Phase 1 No N/A N/A Starrett 2022
LOX0-435 TKI FGFR3 KD GMR  Oral uc Phase 1 No N/A N/A Iyer 2023
LY3076226 ADC FGFR3 ECR Systemic  UC Phase 1 No N/A N/A Kollmannsberger
2021
Vofatamab mAb FGFR3 LBD Systemic  UC Phase 2 No N/A N/A Necchi 2019
(B-701) Siefker-Radtke
2023
MFGR1877S mAb FGFR3 LBD Systemic  STs Phase 1 No N/A N/A O’Donnell 2012
First generation (nonselective TKIs)
Dovitinib TKI RTI VEGFR1- ATPc Oral RCC Phase 3 No ® Hypertriglyceridemia (14%), N/A [34]
(TKI258) 3 (aRCC) fatigue (10%), HTN (8%), diarrhea Motzer 2014
FGFR1-3 (7%)
PDGFRA/

B
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Table 1 (continued)

References

Clinically notable AEs (any grade)

Most common grade >3 AEs

FDA

Clinical trial

Binding Delivery Primary

site

Mechanism Target

Inhibitor

approval

cancer
trials

[33]

N/A

Overall 78.9%

Phase 2 No

Breast, lung,
FGFR1-

ATPc Oral

TKI VEGFR1-

Lucitanib

HTN (57.9%), proteinuria (15.8%),

TMA (14.5%), diarrhea (5.3%)

(E3810)

amplified

STs

FGFR1-3

PDGFRA/

Cortes 2013

N/A

Thrombocytopenia (32%),

CML

Phase 3
(CML)

Biliary,
FGFR-

ABL ATPc Oral

TKI type II

Ponatinib

neutropenia (14%), anemia (6%),

lipase 1 (10%)

VEGFR
FGFR1
c-SRC

(AP24534)

aberrant

advanced

STs
1 = elevation; ADC = antibody-drug conjugate; ATPc = ATP-competitive; aRCC = advanced RCC; CGC = cholangiocarcinoma; CML = chronic myeloid leukemia; ECR = extracellular receptor; FDA

Administration; GMR

US Food and Drug

ligand-binding domain; mAb

= irreversible type [; KD = kinase domain; LBD =

hypertension; IRTI

hyperphosphatemia; HTN

non-small-cell lung cancer; NTX

hypophosphatemia; HPP

gatekeeper mutation-resistant; HPO

= retinal pigment epithelial

renal cell carcinoma; RPED

palmar-plantar erythrodysesthesia; RCC =

nail toxicity; PPE =

not applicable; NR = not reported; NSCLC =

monoclonal antibody; N/A

urinary tract

urothelial carcinoma; UTI =

thrombotic microangiopathy; UC =

tyrosine kinase inhibitor; TMA

detachment; RTI = reversible type I; SRD = serous retinal detachment; STM = stomatitis; STs = solid tumors; TKI

infection.

2 Under review in Japan for biliary cancers.
b Under review for third-line treatment of aRCC.

Second-generation inhibitors specific to the FGFR kinase
domains have a lower rate of toxic effects as they are not
constitutively active in nonmalignant cells. Several orally
bioavailable FGFR inhibitors are currently in clinical devel-
opment. Of these, erdafitinib (JNJ-42756493) is the only
one approved by the FDA for use in patients with locally
advanced/mUC. As of September 2023, the European
Medicines Agency (EMA) accepted and reviewed a market-
ing authorization for a similar indication. Erdafitinib is a
pan-FGFR1-4 inhibitor, with a half-maximal inhibitory con-
centration ranging between 1.2 and 5.7 nmol/1 [35]. Preclin-
ical studies consistently showed that erdafitinib decreased
phosphorylation of FGFR and its downstream effectors,
leading to inhibition of cellular proliferation in FGFR-
altered tumor cell lines [35]. Similar small-molecule inhibi-
tors of FGFR include rogaratinib (BAY1163877), pemigatinib
(INCB054828), and infigratinib (BGJ398). Third-generation
FGFR3-specific inhibitors are now in preclinical develop-
ment. Preclinical and preliminary clinical safety have also
been demonstrated for other modalities of FGFR inhibition
(Table 1). Whether these alternative inhibition strategies
will provide greater efficacy or lower toxicity remains to
be seen.

In practice, the efficacy of FGFR inhibition has been vari-
able in clinical trials, with overall response rates lower than
predicted by preclinical studies, and occasional responses in
those without detectable alterations. In part, the wide-
ranging responses may be because of varying levels of cellu-
lar addiction to FGFR signaling. As demonstrated in lung
cancer [36], differing levels of FGFR signaling activate differ-
ent downstream pathways, leading to variable sensitivity to
inhibition. Furthermore, signaling above a critical threshold
may lead to cross-talk with other RTK pathways, further
convoluting the effects of FGFR inhibition. Finally, other
co-alterations found in specific tumors may compensate
for FGFR signaling blockade by activating redundant path-
ways. The complexity of RTK signaling and their cascading
downstream effects contribute to the unpredictability of
FGFR inhibition and underscore the importance of patient
selection.

The difficulty of target identification is further compli-
cated by the limitation of biopsy materials for next-
generation sequencing (NGS) and obfuscated by the well-
described effect of clonal evolution that leads to spatiotem-
poral heterogeneity [13,37]. Thus, targeted approaches may
best suit localized disease settings with relative molecular
homogeneity. In addition, liquid biopsies that capture the
entire genomic spectrum of the disease, rather than limited
to location-specific biopsies, holds promise for proper
patient selection. Evidence in support of these approaches
is beginning to emerge.

3.5. Clinical trial results

Table 2 summarizes completed and ongoing clinical trials of
FGFR inhibitors in UC. Infigratinib was tested for efficacy in
UC, supported by the 75% disease control rate (DCR)
observed in eight patients with UC in a phase 1 basket trial
[38]. In a subsequent phase 2 study involving a cohort of 67
platinum-ineligible patients with heavily pretreated



Table 2 - Clinical trials evaluating FGFR inhibitors for treatment of urothelial carcinoma

Trial Design Status/ Cohort Phase Stage  Screening Inhibitor Delivery FGFR CMP Tx ORR mPFS, mo mOS Reference
published target arm  (CR/PR) (95% CI) mo
(n) (95%
(@)}
HCRN 12-157 oL Completed BCG-u 2 NMIBC  FGFR3 Dovitinib Oral NS SA 13 8% (6 mo) NR NR Hahn
NCT01732107 2017 >2 prior IVS Tx
Phase 2
NCT01004224 oL Completed  Prior CTx or CTx- 1 Adv/ FGFR1-3 Infigratinib Oral 1-3 SA 67 25.4% 3.8 7.8 [39]
Phase 1 2018 ineligible Met (1.5/23.9) (3.1-5.4) (5.7-
11.6)
BLC2001 OL Completed  Prior CTx * ICI 2 Adv/ FGFR2/3 Erdafitinib Oral Pan SA 929 40% 5.5 13.8 [42]
NCT02365597 2019 Met (3/37) (4.2-6.0) (9.8-
Phase 2 NR)
NCT02529553 OL Completed  76% 1 Adv/ FGFR3 LY3076226 Systemic FGFR3 SA 3 0% N/A N/A Kollmannsberger
Phase 1 2021 >3 prior Tx Met
FORT-1 OL/RS Completed  Prior CTx 2/3 Adv/ FGFR1/3 Rogaratinib Oral Pan Doce/ 87 20.7% 2.7 8.3 [41]
NCT03410693 2022 Met Pax/Vin (2.3/18.4) (1.6-4.6) (6.5-
NR)
THOR cohort 1 RS Completed  Prior ICI + CTx 3 Adv/ FGFR2/3 Erdafitinib Oral Pan Doce/ 136 45.6% 5.6 12.1 [43]
NCT03390504 2023 Met Vin (6.6/39.0) (4.4-5.7) (10.3-
16.4)
THOR cohort 2 RS Completed  CTx + ICI naive 3 Adv/ FGFR2/3 Erdafitinib Oral Pan Pembro 175 40.0% 44 109 Siefker-Radtke
NCT03390504 2023 Met (6.3/33.7) (4.--5.5) (9.2-
12.6)
THOR2 OL Completed BCG-u 2 NMIBC  FGFR2/3 Erdafitinib Oral Pan VS 49 N/A NR ¢ N/A [44]
NCT04172675 2023 MMC/ (16.9-NR)
Gem
FIGHT-201 oL Completed  Prior CTx or CPI 2 Adv/ FGFR3 Pemigatinib Oral 1-3 SA 204 CD 17.8% (0/ CD 4.0 CD 6.8  [54]
NCT02872714 2023 Met CcD 17.8) (3.5-4.2) (5.3-
101 ID 23.3% (3.9/ ID.4.3 9.1)
ID 19.4) (3.9-6.1) ID 8.9
103 (7.5-
15.2)
FIDES-02 oL Completed  >2 prior Tx 1b/2 Adv/ FGFR1-3 Derazantinib Oral 1-3 SA 49 8.2% 6.9 (NR) Range Necchi
NCT04045613 2023 ¢ Met (0/8.2) 0.3-
214
NCI-MATCH OL ANR Tx per molecular 1b/2 Any ST FGF1-3 Fexagratinib Oral Pan SA 48 8% 3.4 (NR) NR Chae
cohort H 2020 ¢ subgroup (AZD4547) (0/8)
NCT02465060
FORT-2 OL ANR CPI, no prior Tx 1b/2 Adv/ FGFR1/3 Rogaratinib + Oral + Pan SA 26 55% N/A N/A Rosenberg
NCT03473756 2021 ° within 12 mo Met Atezo systemic (13/42)
NORSE RS ANR CPI, no prior Tx 2 Adv/ FGFR1-3 Erdafitinib + Oral + Pan + Cetre 87 E: 44.2% (23] E:56 N/A Siefker-Radtke
NCT03473743 2023 ¢ within 12 mo Met Cetre systemic E43 41.7) (4.3-7.4)
E+C E+C: 54.5% E+C: 11.0
44 (13.6/40.9) (5.5-13.6)
TAR-210 cohort 3  OL AR Recurrent IR LG Ta/ 1 IR FGFR2/3 Erdafitinib IVS Pan SA 15 87% NR ¢ N/A Vilaseca
NCT05316155 2023 ° T1, VIL NMIBC (87/0) (2.96-NR)
NCT04963153 oL AR ICI + prior CTx or CPI  1b/2 Adv/ FGFR2/3 Erdafitinib + EV  Oral + Pan SA 30>  N/A N/A N/A [56]
- Met systemic
TAR-210 OL AR 4 cohorts 1 NMIBC/ FGFR2/3 Erdafitinib VS Pan SA 112¢ N/A N/A N/A
NCT05316155 - MIBC
NEOWIN oL AR NATx for CPI 2 MIBC FGFR1-3 Erdafitinib + Oral + Pan + Cetre 90° NJ/A N/A N/A
EudraCT2022- - Cetre systemic

002586-15
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Table 2 (continued)

Trial Design Status/ Cohort Phase Stage Screening Inhibitor Delivery FGFR CMP Tx ORR mPFS, mo mOS Reference
published target arm  (CR/PR) (95% CI) mo
(n) (95%
(@))]
SURF301 OL AR FGFR3 mutation, no 1/2 Adv/ FGFR3 TYRA-300 Oral FGFR3 SA 310° N/A N/A N/A
NCT05544552 - PFGFRi Met
LOX0O-FG3-22001 OL AR FGFR3 alteration, 1 Adv/ FGFR3 LOX0-435 Oral FGFR3 SA 180 ¢ N/A N/A N/A
NCT05614739 - PFGFRi allowed Met
PROOF-302 RS Terminated Prior NAC or CPI 3 MIBC/ FGFR3 Infigratinib Oral 1-3 Placebo 218" NJA N/A N/A Grivas
NCT04197986 2023 ¢ uUTuC
FIGHT-205 ROL Terminated CPI 2 Adv/ FGFR3 Pemigatinib + Oral + 1-3 Gem/ 372 NJ/A N/A N/A Galsky
NCT04003610 2022 ° Met Pembro systemic CBP
FIERCE-21 ROL Terminated Prior CTx 2 Adv/ FGFR3 Vofatamab * Systemic FGFR3 + Doce 55 ¢ 12.7% N/A N/A Necchi
NCT02401542 2019 ¢ Met Doce (211
b
)
FIERCE-22 oL Terminated Prior Ctx 1b/2 Adv/ FGFR3 Vofatamab + Systemic FGFR3 SA 35 ¢ 30% N/A N/A Siefker-Radtke
NCT03123055 2019 ¢ Met Pembro (48
h)
NERA ROL Withdrawn CPI 2 MIBC FGFR2/3 Erdafitinib + Oral + Pan + Atezo 44" - - -
NCT05564416 - Atezo systemic

Adv/Met = advanced/metastatic disease; Atezo = atezolizumab; ANR = active, not recruiting; AR = active, recruiting; BCG-u - bacillus Calmette-Guérin-unresponsive; CBP = carboplatin; CD = once daily continuously; Cetre =
cetrelimab; CI = confidence interval; CMP = comparison; CPI = cisplatin-ineligible; CR = complete response; CTx = chemotherapy; Doce = docetaxel; E/E+C = erdafitinib/erdafitinib + cetrelimab; EV = enfortumab vedotin; Gem
= gemcitabine; ICI = immune checkpoint inhibitor; ID = once daily intermittently; IR = intermediate risk; IVS = intravesical; LG = low grade; MMC = mitomycin C; N/A = not applicable; NAC = neoadjuvant CTx; MIBC = muscle-
invasive bladder cancer; mOS = median overall survival; mPFS = median progression-free survival; NATX = neoadjuvant Tx; NMIBC = non-muscle-invasive bladder cancer; NR = not reached; NS = nonselective; OL = open label;
ORR = objective response rate; Pax = paclitaxel; Pembro = pembrolizumab; pFGFRi = prior FGFR inhibitor; PR = partial response; ROL = randomized OL; RS = randomized study; SA = single arm; ST = solid tumor; TX =
treatment; UTUC = upper tract urothelial carcinoma; Vin = vinflunine; VTL = visible target lesion.

2 Abstract.

b Planned.

¢ Enrolled.

4 Recurrence-free survival.

ZT1-011(S20¢2) L8 AD0T10dN NVIdodNd
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advanced UC [39], the objective response rate (ORR) was
25.4% and 38.8% of patients had stable disease, yielding a
DCR of 64.2%. More than two-thirds of the patients experi-
enced grade >3 AEs, the most common of which was hyper-
phosphatemia. Biomarker analysis revealed that only 68% of
the patients had matching FGFR3 alterations in plasma cell-
free DNA and tumor tissue. In 22% of the patients, no circu-
lating tumor DNA (ctDNA) was found. A decrease in FGFR3
ctDNA levels in longitudinal on-treatment samples corre-
lated with better cancer control. Finally, gatekeeper muta-
tions (V443L, V443M, and 1496V) thought to confer
treatment resistance were found in ctDNA from four
patients during treatment, pointing to a possible resistance
mechanism. These results led to initiation of the phase 3
PROOF 302 trial investigating disease-free survival rates in
patients with high-risk muscle-invasive UTUC or MIBC
and susceptible FGFR3 alterations receiving oral infigratinib
[40]. Disappointingly, the study was terminated early
because of poor accrual.

Rogaratinib, an oral pan-FGFR inhibitor, was compared to
chemotherapy in the phase 2/3 FORT-1 trial [41]. A total of
165 patients with FGFR1/3 mRNA-positive, locally
advanced/mUC with at least one prior platinum-
containing regimen were randomized to rogaratinib or
chemotherapy (docetaxel, paclitaxel, or vinflunine). There
was no significant difference in either overall survival (OS;
median 8.3 vs 9.8 mo; hazard ratio [HR] 1.11; p = 0.67) or
the ORR (20.7% vs 19.3%; p = 0.48). The incidence of grade
>3 toxicity was also similar between the treatment arms.
A post hoc analysis revealed that only 21/87 patients with
high FGFR1/3 mRNA levels treated with rogaratinib actually
had an FGFR3 DNA alteration. However, the ORR was much
higher in this subgroup (52.4%), suggesting that DNA alter-
ations should be used for patient selection.

This approach was taken in the open-label phase 2
BLC2001 trial investigating the efficacy of erdafitinib in a
similar cohort of patients with advanced UC following dis-
ease progression on or after chemotherapy [42]. Overall,
99 heavily pretreated patients with high-risk disease
received a median of five cycles of oral erdafitinib. The
ORR was 40% (3% CR; 37% partial response) in the overall
cohort, and 59% in the group with previous ICI therapy,
yielding progression-free survival (PFS) of 5.5 mo and OS
of 13.8 mo. This was the first success for targeted therapy
in UC and led to accelerated FDA approval of erdafitinib in
2019. Thereafter, the enhanced efficacy of erdafitinib in
FGFR3/2-altered disease was validated in a phase 3 study
comparing erdafitinib to chemotherapy (THOR-1) [43]. This
trial enrolled 266 patients with advanced/mUC that pro-
gressed following previous treatments including ICIs.
Erdafitinib-treated patients had longer OS (12.1 vs 7.8 mo;
HR 0.64; p = 0.005) and PFS (5.6 vs 2.7 mo; HR 0.58;
p < 0.001) and a higher ORR (45.6% vs 11.5%). The toxicity
profile was similar to that in previous studies, with grade
3/4 treatment-related AE incidence of 45.9% and one
treatment-related death. The most common grade >3 toxi-
cities were hand-foot syndrome, stomatitis, onycholysis,
and hyperphosphatemia. Central serous retinopathy was
seen in 23 patients, with clinical resolution in the majority
of patients. These confirmatory results led to full FDA

approval in 2024 and acceptance of the marketing autho-
rization application by the EMA.

In another phase 3 study, erdafitinib was compared to
pembrolizumab in ICl-naive patients with mUC with
FGFR3/2 alterations whose disease progressed on one prior
line of treatment in THOR-1 cohort 2; the hypothesis was
that these patients may have an attenuated response to
immunotherapy because of poor baseline immune infiltra-
tion [16]. However, there was no statistically significant dif-
ference in median OS (10.9 vs 11.1 mo; HR 1.18; p = 0.18).
Although the ORR was higher in the erdafitinib arm (40.0%
vs 21.6%; RR 1.85), the median duration of response was
much longer in the pembrolizumab arm(14.4 vs. 4.3 mo).
These results corroborated the post hoc analysis results
reported by Wang et al [23] for the IMVigor210 and Check-
Mate275 studies, which showed no differences in response
to ICI or survival between the FGFR3-altered and WT groups.

With the proof of concept established in mUC, investiga-
tions of oral erdafitinib were initiated in NMIBC. In THOR-2
cohort 1, patients with BCG-exposed, papillary-only high-
grade NMIBC with FGFR3/2 alterations were randomized
to receive erdafitinib (6 mg) or intravesical chemotherapy
[44]. Despite a clear efficacy signal (recurrence-free survival
16.9 vs 11.6 mo; HR 0.28; p < 0.001), the trial was termi-
nated because of slow accrual. Despite the reduced dosing,
erdafitinib caused unacceptable toxicity, leading to treat-
ment discontinuation in 29% of patients, which is higher
than the rate previously reported for advanced/mUC. The
promising antitumor activity of erdafitinib but lower toler-
ance for AEs in localized disease suggest that local delivery
mechanisms could enhance the efficacy and bypass sys-
temic toxicity.

TAR-210 is a novel intravesical system designed to pro-
vide local, sustained release of erdafitinib within the blad-
der for which a remarkable benefit/risk profile has been
demonstrated. At the 2023 European Society for Medical
Oncology meeting, results for the initial 11 patients with
BCG-exposed high-risk NMIBC and 15 patients with
intermediate-risk NMIBC enrolled in the phase 1 study
(NCT05316155) were reported: the recurrence-free survival
rate was 82% and the CR rate was 87% in the two cohorts
[45]. Notably, only a single treatment-related serious AE
(pyelonephritis) occurred, with no dose-limiting toxicity.
Other on-target serious AEs of interest seen with oral erdafi-
tinib, such as hyperphosphatemia and central serous
retinopathy, were not observed. These promising prelimi-
nary results prompted launch of the phase 3 MoonRISe-1
trial, which is comparing intravesical TAR-210 versus inves-
tigator choice of single-agent intravesical chemotherapy in
patients with intermediate-risk NMIBC, in April 2024
(NCT06319820).

4. Discussion

If the impressive preliminary efficacy/toxicity profile can be
recapitulated in the pivotal phase 3 trial, intravesical TAR-
210 will be poised to disrupt the current treatment land-
scape for intermediate-risk NMIBC [46]. However, accumu-
lating experience with other TKI therapies suggests that
acquired resistance to FGFR inhibitors should be antici-
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Mechanisms of FGFR resistance
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Fig. 2 - Mechanisms of resistance to FGFR inhibitors. Current FGFR inhibitors include small-molecule inhibitors targeting the tyrosine kinase domain and
monoclonal antibodies to the extracellular domain. Multiple mechanisms of resistance exist. Gatekeeper mutations may lead to steric hindrance of the ATP-
binding pocket and block small-molecule inhibitor binding. Tumor cells may switch from reliance on FGFR pathway signaling to other redundant cell
proliferation pathways (eg, EGFR) to overcome FGFR inhibition. Reliance on an extracellular signal can be bypassed via constitutive activation of intracellular
signaling molecules (Ras, PI3K) or loss of regulatory proteins (PTEN, p53). Additional single-nucleotide variations leading to resistance include mutations to
the DFG latch, which alter the positioning of a constitutive amino acid required for binding of certain small-molecule inhibitors, and mutations that disrupt

the molecular brake that autoinhibits FGFR activity.

pated. Fortunately, much has been gleaned about the mech-
anisms of resistance from the growing body of evidence
from preclinical studies and correlative data from FGFR
inhibitor trials (Fig. 2).

Using a small hairpin RNA library, Wang et al [47]
screened for inhibitors that sensitize UC to FGFR inhibition
in vitro. They found inhibition of components of the PI3K,
EGFR, MET, and ERBB3 pathways abrogated potential com-
pensatory resistance mechanisms following FGFR suppres-
sion. Other studies have confirmed the critical role of
these pathways in rescuing FGFR inhibition [48-51]. For
EGFR, two distinct mechanisms were identified, one in

which FGFR3 signaling through the MAPK pathway was
supplemented by EGFR, and another dominated by EGFR
signaling via repression of FGFR3, with EGFR inhibition sal-
vaged by delayed upregulation of FGFR3 expression [49].
These discoveries highlight the heterogeneity among tumor
cells and suggest that dual inhibition of FGFR3 and EGFR
may lead to enhanced antitumor efficacy.

In addition, multiple mechanisms of resistance involving
point mutations in FGFR3 have been described. Gatekeeper
mutations can lead to substitution of bulky amino acid resi-
dues that create steric hindrance and block access to the
ATP-binding domain (V555M/L and V553/L) while simulta-
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neously strengthening the hydrophobic spine of the kinase
to increase baseline activity of the receptor [49,50,52,53].
Mutations that change the molecular conformation of the
DFG latch alter the binding site of many FGFR3 inhibitors
and thus attenuate their potency. In addition, mutations
such as N540K disengage the natural molecular brake, lead-
ing to a constitutive increase in enzyme activity (Fig. 2).

With the increasing clinical use of FGFR inhibitors, trans-
lational data that can define genomic patterns of resistance
are accumulating. ctDNA from 36 patients treated with
pemigatinib in the FIGHT-201 trial was used to identify
acquired FGFR3 mutations (four gatekeeper, two molecular
brake) [54]. Similarly, genomic profiling at the time of pro-
gression in 19 patients treated with FGFR inhibitors
revealed seven patients with gatekeeper mutations, five of
which were absent at baseline, suggesting resistance via
clonal evolution [55]. This was substantiated by functional
studies in which each of the gatekeeper mutations was
introduced to a pre-existing FGFR3:TACC3 fusion cell line
and led to a measurable increase in erdafitinib resistance.
In the same cohort, 11 of the 19 patients had co-
alterations within the PI3K pathway at the time of progres-
sion, including five with PIK3CA alteration [55]. Dual treat-
ment with erdafitinib and pictilisib (PI3K inhibitor) in a
patient-derived xenograft model resulted in synergistic
tumor suppression. Lastly, analysis of FIGHT-201 trial sam-
ples revealed new oncogenic mutations in TP53, FGFR3, and
AKT1 before or at the time of clinical progression [13].

The convergence of preclinical and translational data for
FGFR3 gatekeeper mutations and alternative RTK activation
supports combined TKI therapy and the development of
next-generation FGFR inhibitors that might overcome these
impediments. Two FGFR3 inhibitors (LOX0-435, TYRA-300)
with reported efficacy against gatekeeper mutations are
already under investigation. Furthermore, combining FGFR
inhibitors with antibody-drug conjugates may result in
higher efficacy [56]. Detection of mutations associated with
treatment resistance in localized disease may be possible
via more frequent and accurate monitoring using urinary
ctDNA [57]. Increasingly accurate early detection of resis-
tance mutations occurring at minimal variant allele fre-
quencies may support administration of salvage agents. In
addition, the TARIS platform for sustained intravesical drug
delivery is not limited to erdafitinib, as evidenced by
promising results from five SunRISe trials using TAR-200,
a similar intravesical device that elutes gemcitabine. With
such a dynamic delivery system, multiple drugs may be
administered via the intravesical route to bypass potential
systemic toxicity. Coupled with the development of diag-
nostic urinary ctDNA biomarkers and an ever-expanding
understanding of the biology of bladder cancer, we are
indeed turning the page to precision medicine as the next
chapter in the management of NMIBC.

5. Conclusions

Although FGFR inhibitors are approved for advanced UC
refractory to chemotherapy, they may provide a significant
therapeutic benefit in patients with early-stage NMIBC.
With an increasing understanding of the molecular under-

pinnings of FGFR-driven molecular oncogenesis and novel
drug delivery platforms, we are at the dawn of precision
oncology in bladder cancer.
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